A Müntz Space Having No Complement

DONALD J. NEWMAN

Department of Mathematics, Temple University, Philadelphia, Pa. 19122, U.S.A.

Communicated by Oved Shisha

Received December 20, 1982

Let Λ be a set of positive numbers for which $\sum_{\lambda \in \Lambda} 1/\lambda < \infty$ and consider the closed span S_{Λ} of the monomials 1, x^{λ} , $\lambda \in \Lambda$. By the celebrated theorem of Muntz, S_{Λ} is *not* all of C[0, 1], and by a later theorem of Erdös, S_{Λ} consists only of "power" series $a_0 + \sum_{\Lambda} a_{\lambda} x^{\lambda}$ convergent on [0, 1). Recently, it was asked whether these S_{Λ} always have a complement in

Recently, it was asked whether these S_{Λ} always have a complement in C[0, 1], or, equivalently, whether there is always a bounded projection of C[0, 1] onto S_{Λ} . Indeed, it was noticed that this is the case for Λ the powers of 2, but we shall prove that it is *not* always so.

The construction of our example is based on the observation that any projection of C[0, 1] onto the span of 1, x^N , x^{2N} ,..., x^{kN} has norm $> c \log k$. Thus, we can force a *large* projection even though there is a *small* sum of reciprocals. Using this fact allows us to construct our example by a kind of "condensation of singularities." The details are as follows:

LEMMA 1. There is a c > 0 such that any projection of C[0, 1] onto the span of 1, x^N , x^{2N} ,..., x^{kN} has norm > $c \log k$.

Proof. If P is such a projection and ϕ denotes the map $\phi: f(x) \to f(x^N)$ then $\phi^{-1}P\phi$ is a projection onto the span of 1, $x, x^2, ..., x^k$. Writing $x = (\cos \theta + 1)/2, \ 0 \le \theta \le \pi$, then we see we have a projection of $C[0, \pi]$ onto span $\{1, \cos \theta, ..., \cos k\theta\}$ and it is known that the smallest such projection is the Fourier projection F. Since $||F|| \sim (4/\pi^2) \log k$ it follows that $||\phi^{-1}P\phi|| > c \log k, \ c > 0$. Finally, since ϕ is an isometry we see that $||P|| = ||\phi^{-1}P\phi||$ and the lemma is established.

We now need a result which says that a polynomial in x is very poorly approximable by a polynomial in a very high power of x. This is

LEMMA 2. Suppose p(x) and q(x) are polynomials of degree at most m, and that q(0) = 0, then $|| p(x) + q(x^n)|| \ge (1 - 2m^2(\log n + 2)/n) || p(x)||$.

Proof. We may normalize so that

$$\| p(x) + q(x'') \| = 1.$$
 (1)

We may also assume $||p|| \ge 1$ or all is trivial, so we write

$$\|p(x)\| = A \ge 1, \tag{2}$$

and we deduce from (1), that

$$\|q(x)\| \leqslant A + 1 \leqslant 2A. \tag{3}$$

By the standard derivative bounds, we then obtain

$$\|p'(x)\| \leqslant 2m^2 A,\tag{4}$$

$$\|q'(x)\| \leqslant 4m^2 A. \tag{5}$$

From (5) it follows that $|q(x)| \leq 4m^2 Ax$, so that

$$|q(x^n)| \leq 4m^2 A \left(1 - \frac{\log n}{n}\right)^n \leq \frac{4m^2 A}{n} \quad \text{on} \quad \left[0, 1 - \frac{\log n}{n}\right], \quad (6)$$

and so, again by (1), we have

$$|p(x)| \leq 1 + \frac{4m^2}{n}A \qquad \text{on} \left[0, 1 - \frac{\log n}{n}\right]. \tag{7}$$

On the rest of the unit interval we use (4) to get

$$|p(x)| \leq 1 + \frac{4m^2}{n}A + 2m^2A \frac{\log n}{n}$$
 on all of [0, 1]. (8)

But of course this means that

$$A \leqslant 1 + \frac{4m^2}{n}A + 2m^2A \frac{\log n}{n},\tag{9}$$

which is exactly the required result.

We now define:

A fast sequence of integers N_i is one, where

$$\frac{N_i}{\log N_i + 2} \ge 2N_{i-1}^2 i^2 (i-1)^2, \qquad 1 < N_1 < N_2 \cdots,$$
(10)

and, by repeated use of our Lemma 2; we derive

352

LEMMA 3. Let N_i be a fast sequence (see (10)), write $N_0 = 0$, assume deg $P_i(x) \leq i$ for $i \geq 0$, $P_i(0) = 0$ for i > 0, and call $S_j = \sum_{i=0}^{j} P_i(x^{N_i})$. Then we have

$$\|S_j\| \leq 2 \|S_k\| \quad \text{for} \quad k \geq j \geq 0.$$

Proof. We use induction on k to prove even more, that

$$\|S_{k}\| \ge \frac{k+1}{2k} \|S_{j}\|.$$
(11)

The induction begins at k = j, where the result is trivial, and we may assume it to hold for k - 1, which is to say,

$$\|S_{k-1}\| \ge \frac{k}{2(k-1)} \|S_j\|.$$
(12)

We now apply Lemma 2 to the case of

$$p(x) = S_{k-1}, \qquad q(x) = P_k(x), \qquad n = N_k, \qquad m = N_{k-1}(k-1).$$

Clearly deg $p(x) \le m$, but also deg $q(x) \le k \le 2(k-1) \le N_{k-1}(k-1) = m$, and so the hypotheses of Lemma 2 are satisfied. Also $2m^2(\log n+2)/n = 2N_{k-1}^2(k-1)^2(\log N_k+2)/N_k \ge 1/k^2$ by (10) and so the lemma gives

$$\|S_{k}\| \ge \left(1 - \frac{1}{k^{2}}\right) \|S_{k-1}\|.$$
 (13)

Combining (12) and (13) and noting that $(1 - (1/k^2))(k/(k-1)) = (k+1)/k$ does indeed give (11), and so the induction is complete.

We now wish to extend this result to the case $k = \infty$, but this is not quite trivial and some convergence hypothesis is needed. We have, namely,

LEMMA 4. Under the same hypotheses as in Lemma 3 plus the assumption that $\sum_{i=1}^{\infty} p_i(x^{N_i})$ converges uniformly on every subinterval $[0, \rho]$, $\rho < 1$, we have $\|S_j\| \leq 2 \|S_{\infty}\|$.

Proof. Fix a positive $\rho < 1$ and a positive ε . By the uniform convergence we can choose an M > j so that $|S_M| \leq (1 + \varepsilon) |S_{\infty}|$ on $[0, \rho]$ which gives

$$\|S_{M}(\rho x) \leqslant \|S_{\infty}\| + \varepsilon.$$
⁽¹⁴⁾

Applying Lemma 3 therefore gives

$$\|S_{j}(\rho x)\| \leq 2 \|S_{M}(\rho x)\| \leq 2 \|S_{\infty}\| + 2\varepsilon,$$
(15)

and we may now let $\rho \to 1$ and then $\varepsilon \to 0$. (Note that we did not have to assume $||S_{\infty}|| < \infty$ since the result is trivial when $||S_{\infty}|| = \infty$.)

Having completed these preliminaries it is an easy task to display our example. We simply choose any fast sequence N_i and then take $\Lambda = \bigcup_{i=1}^{\infty} \{N_i, 2N_i, ..., iN_i\}$. To prove that this has the desired property we note that every $f(x) \in S_{\Lambda}$ has an Erdös expansion $\sum_{i=0}^{\infty} P_i(x^{N_i})$ satisfying the hypotheses of Lemma 4. Therefore, by that lemma, and in the language of that lemma, we have $||S_j|| \leq 2 ||f||$, $||S_{j-1}|| \leq 2 ||f||$, $||S_0|| \leq 2 ||f||$. This means that the map, T_j , taking each $f \in S_{\Lambda}$ into its $S_j - S_{j-1} + S_0$ has norm bounded by 6. The map T_j , however, is a projection from S_{Λ} onto span $\{1, x^{N_j}, x^{2N_j}, ..., x^{jN_j}\}$.

Thus if there were a bounded projection P of C[0, 1] onto S_A then $T_j P$ would be a projection of C[0, 1] onto span $\{1, x^{N_j}, ..., x^{jN_j}\}$. The bound $||T_jP|| \leq 6 ||P||$ would, therefore, give a contradiction to Lemma 1! Q.E.D.