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Let A be a set of positive numbers for which LAEA II). < 00 and consider
the closed span SA of the monomials 1, x A

, ). EA. By the celebrated theorem
of Muntz, SA is not all of C[O, 1], and by a later theorem of Erdos, SA
consists only of "power" series ao+LA aA x A convergent on [0, 1).

Recently, it was asked whether these SA always have a complement in
C[O, 1], or, equivalently, whether there is always a bounded projection of
e[O, 1] onto SA' Indeed, it was noticed that this is the case for A the powers
of 2, but we shall prove that it is not always so.

The construction of our example is based on the observation that any
projection of C[O, 1] onto the span of I, xN

, x 2N
,... , X

kN has norm> clog k.
Thus, we can force a large projection even though there is a small sum of
reciprocals. Using this fact allows us to construct our example by a kind of
"condensation of singularities." The details are as follows:

LEMMA 1. There is a c >°such that any projection of C[O, II onto the
span of I, x N

, X
2N ,oo., X

kN has norm> clog k.

Proof If P is such a projection and ¢ denotes the map ¢:f(x) ---> f(xlll
)

then ¢-Ip¢ is a projection onto the span of I, x,x 2
, ...,X

k
• Writing

x = (cos e+ 1)/2, °<. e<. n, then we see we have a projection of C[0, n]
onto span 11, cos e,..., cos ke} and it is known that the smallest such
projection is the Fourier projection F. Since IIFII- (4In 2

) log k it follows
that II r IN II > clog k, c > 0. Finally, since ¢ is an isometry we see that
IIPII = 1I¢-INIl and the lemma is established.

We now need a result which says that a polynomial in x is very poorly
approximable by a polynomial in a very high power of x. This is

LEMMA 2. Suppose p(x) and q(x) are polynomials of degree at most m,
and that q(O) = 0, then II p(x) + q(xn)11 ~ (1 - 2m 2(log n + 2)ln) II p(x)lI.
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Proof We may normalize so that

II p(x) + q(xn)11 = 1.

We may also assume II pll ~ 1 or all is trivial, so we write

II p(x)11 = A ~ I,

and we deduce from (1), that

Ilq(x)11 ~A + 1~ 2A.

By the standard derivative bounds, we then obtain

II p'(x)11 ~ 2m 2A,

Ilq'(x)11 ~ 4m 2A.

From (5) it follows that /q(x)/ ~ 4m 2Ax, so that

(1)

(2)

(3)

(4 )

(5)

and so, again by (I), we have

(6)

4m 2

Ip(x)1 <1+-A
n

I log nJon l 0, 1 - -n- . (7)

on all of [0, 1].

On the rest of the unit interval we use (4) to get

4m 2 log nIp(x)1 <1 +--A + 2m 2A--
n n

But of course this means that

which is exactly the required result.

We now define:

A fast sequence of integers N; is one, where

(8)

(9)

N; ~ 2N~ i2(i _ 1)2
log N; + 2 ~ 1-1 ,

(10)

and, by repeated use of our Lemma 2; we derive
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LEMMA 3. Let Ni be a fast sequence (see (10)), write No = 0, assume
deg PJx) ~ i for i ~ 0, Pi(O) = 0 for i> 0, and call Sj = L1=o pi(XN

;). Then
we have

for k~j~ O.

Proof We use induction on k to prove even more, that

(11 )

The induction begins at k = j, where the result is trivial, and we may assume
it to hold for k - 1, which is to say,

(12)

We now apply Lemma 2 to the case of

Clearly degp(x)~m, but also degq(x)~k~2(k-l)~Nk_,(k-l)=m,

and so the hypotheses of Lemma 2 are satisfied. Also 2m 2(log n + 2)/n =
2NL ,(k - 1)2(1og N k + 2)/Nk~ l/k 2 by (10) and so the lemma gives

(13 )

Combining (12) and (13) and noting that (1- (1/e))(k/(k - 1)) =
(k + 1)/k does indeed give (11), and so the induction is complete.

We now wish to extend this result to the case k = 00, but this is not quite
trivial and some convergence hypothesis is needed. We have, namely,

LEMMA 4. Under the same hypotheses as in Lemma 3 plus the
assumption that L~, Pi(XN

;) converges uniformly on every subinterval [0, p I,
p < 1, we have IISJ ~ 211Sooll.

Proof Fix a positive p < 1 and a positive e. By the uniform convergence
we can choose an M >j so that 1 8 M I ~ (1 + e) 1800 1 on [0, p] which gives

(14)

Applying Lemma 3 therefore gives

(15)
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and we may now let p -+ 1 and then (:; -+ 0. (Note that we did not have to
assume IISecl1 < 00 since the result is trivial when IISecl1 = 00.)

Having completed these preliminaries it is an easy task to display our
example. We simply choose any fast sequence N; and then take
A = U~ 1 {Ni' 2Ni''''' iN;}. To prove that this has the desired property we
note that every f(x) E SA has an Erdos expansion L~o P;(XNi) satisfying the
hypotheses of Lemma 4. Therefore, by that lemma, and in the language of
that lemma, we have IISJ~21Ifll, IISj_lll~21Ifll, IISoll~21Ifll. This
means that the map, Tj , taking eachfE SA into its Sj - Sj_l + So has norm
bounded by 6. The map Tj , however, is a projection from SA onto

{ I N. 2N· x'·N.}span ,x J, X J, ... , J.

Thus if there were a bounded projection P of qo, 1] onto SA then TiP
would be a projection of qo, 1] onto span{1, X Ni, ••• , ~NJ}. The bound
II TjPl1 ~ 611PII would, therefore, give a contradiction to Lemma I! Q.E.D.


