A Müntz Space Having No Complement

Donald J. Newman
Department of Mathematics, Temple University, Philadelphia, Pa. 19122, U.S.A.
Communicated by Oved Shisha

Received December 20, 1982

Let Λ be a set of positive numbers for which $\sum_{\lambda \in \Lambda} 1 / \lambda<\infty$ and consider the closed span S_{A} of the monomials $1, x^{\lambda}, \lambda \in \Lambda$. By the celebrated theorem of Müntz, S_{Λ} is not all of $C[0,1]$, and by a later theorem of Erdös, S_{A} consists only of "power" series $a_{0}+\sum_{\Lambda} a_{\lambda} x^{\lambda}$ convergent on $[0,1)$.

Recently, it was asked whether these S_{A} always have a complement in $C[0,1]$, or, equivalently, whether there is always a bounded projection of $C[0,1]$ onto S_{Λ}. Indeed, it was noticed that this is the case for Λ the powers of 2 , but we shall prove that it is not always so.

The construction of our example is based on the observation that any projection of $C[0,1]$ onto the span of $1, x^{N}, x^{2 N}, \ldots, x^{k N}$ has norm $>c \log k$. Thus, we can force a large projection even though there is a small sum of reciprocals. Using this fact allows us to construct our example by a kind of "condensation of singularities." The details are as follows:

Lemma 1. There is a $c>0$ such that any projection of $C[0,1]$ onto the span of $1, x^{N}, x^{2 N}, \ldots, x^{k N}$ has norm $>c \log k$.

Proof. If P is such a projection and ϕ denotes the map $\phi: f(x) \rightarrow f\left(x^{N}\right)$ then $\phi^{-1} P \phi$ is a projection onto the span of $1, x, x^{2}, \ldots, x^{k}$. Writing $x=(\cos \theta+1) / 2,0 \leqslant \theta \leqslant \pi$, then we see we have a projection of $C[0, \pi]$ onto $\operatorname{span}\{1, \cos \theta, \ldots, \cos k \theta\}$ and it is known that the smallest such projection is the Fourier projection F. Since $\|F\| \sim\left(4 / \pi^{2}\right) \log k$ it follows that $\left\|\phi^{-1} P \phi\right\|>c \log k, c>0$. Finally, since ϕ is an isometry we see that $\|P\|=\left\|\phi^{-1} P \phi\right\|$ and the lemma is established.

We now need a result which says that a polynomial in x is very poorly approximable by a polynomial in a very high power of x. This is

Lemma 2. Suppose $p(x)$ and $q(x)$ are polynomials of degree at most m, and that $q(0)=0$, then $\left\|p(x)+q\left(x^{n}\right)\right\| \geqslant\left(1-2 m^{2}(\log n+2) / n\right)\|p(x)\|$.

Proof. We may normalize so that

$$
\begin{equation*}
\left\|p(x)+q\left(x^{n}\right)\right\|=1 \tag{1}
\end{equation*}
$$

We may also assume $\|p\| \geqslant 1$ or all is trivial, so we write

$$
\begin{equation*}
\|p(x)\|=A \geqslant 1 \tag{2}
\end{equation*}
$$

and we deduce from (1), that

$$
\begin{equation*}
\|q(x)\| \leqslant A+1 \leqslant 2 A \tag{3}
\end{equation*}
$$

By the standard derivative bounds, we then obtain

$$
\begin{align*}
& \left\|p^{\prime}(x)\right\| \leqslant 2 m^{2} A \tag{4}\\
& \left\|q^{\prime}(x)\right\| \leqslant 4 m^{2} A . \tag{5}
\end{align*}
$$

From (5) it follows that $|q(x)| \leqslant 4 m^{2} A x$, so that

$$
\begin{equation*}
\left|q\left(x^{n}\right)\right| \leqslant 4 m^{2} A\left(1-\frac{\log n}{n}\right)^{n} \leqslant \frac{4 m^{2} A}{n} \quad \text { on } \quad\left[0,1-\frac{\log n}{n}\right\rfloor \tag{6}
\end{equation*}
$$

and so, again by (1), we have

$$
\begin{equation*}
|p(x)| \leqslant 1+\frac{4 m^{2}}{n} A \quad \text { on }\left[0,1-\frac{\log n}{n}\right] \tag{7}
\end{equation*}
$$

On the rest of the unit interval we use (4) to get

$$
\begin{equation*}
|p(x)| \leqslant 1+\frac{4 m^{2}}{n} A+2 m^{2} A \frac{\log n}{n} \quad \text { on all of }[0,1] \tag{8}
\end{equation*}
$$

But of course this means that

$$
\begin{equation*}
A \leqslant 1+\frac{4 m^{2}}{n} A+2 m^{2} A \frac{\log n}{n} \tag{9}
\end{equation*}
$$

which is exactly the required result.
We now define:
A fast sequence of integers N_{i} is one, where

$$
\begin{equation*}
\frac{N_{i}}{\log N_{i}+2} \geqslant 2 N_{i-1}^{2} i^{2}(i-1)^{2}, \quad 1<N_{1}<N_{2} \cdots \tag{10}
\end{equation*}
$$

and, by repeated use of our Lemma 2; we derive

Lemma 3. Let N_{i} be a fast sequence (see (10)), write $N_{0}=0$, assume $\operatorname{deg} P_{i}(x) \leqslant i$ for $i \geqslant 0, P_{i}(0)=0$ for $i>0$, and call $S_{j}=\sum_{i=0}^{j} P_{i}\left(x^{N_{i}}\right)$. Then we have

$$
\left\|S_{j}\right\| \leqslant 2\left\|S_{k}\right\| \quad \text { for } \quad k \geqslant j \geqslant 0 .
$$

Proof. We use induction on k to prove even more, that

$$
\begin{equation*}
\left\|S_{k}\right\| \geqslant \frac{k+1}{2 k}\left\|S_{j}\right\| . \tag{11}
\end{equation*}
$$

The induction begins at $k=j$, where the result is trivial, and we may assume it to hold for $k-1$, which is to say,

$$
\begin{equation*}
\left\|S_{k-1}\right\| \geqslant \frac{k}{2(k-1)}\left\|S_{j}\right\| . \tag{12}
\end{equation*}
$$

We now apply Lemma 2 to the case of

$$
p(x)=S_{k-1}, \quad q(x)=P_{k}(x), \quad n=N_{k}, \quad m=N_{k-1}(k-1) .
$$

Clearly $\operatorname{deg} p(x) \leqslant m$, but also $\operatorname{deg} q(x) \leqslant k \leqslant 2(k-1) \leqslant N_{k-1}(k-1)=m$, and so the hypotheses of Lemma 2 are satisfied. Also $2 m^{2}(\log n+2) / n=$ $2 N_{k-1}^{2}(k-1)^{2}\left(\log N_{k}+2\right) / N_{k} \geqslant 1 / k^{2}$ by (10) and so the lemma gives

$$
\begin{equation*}
\left\|S_{k}\right\| \geqslant\left(1-\frac{1}{k^{2}}\right)\left\|S_{k-1}\right\| . \tag{13}
\end{equation*}
$$

Combining (12) and (13) and noting that $\left(1-\left(1 / k^{2}\right)\right)(k /(k-1))=$ $(k+1) / k$ does indeed give (11), and so the induction is complete.

We now wish to extend this result to the case $k=\infty$, but this is not quite trivial and some convergence hypothesis is needed. We have, namely,

Lemma 4. Under the same hypotheses as in Lemma 3 plus the assumption that $\sum_{i=1}^{\infty} p_{i}\left(x^{N_{i}}\right)$ converges uniformly on every subinterval $[0, \rho \mid$, $\rho<1$, we have $\left\|S_{j}\right\| \leqslant 2\left\|S_{\infty}\right\|$.

Proof. Fix a positive $\rho<1$ and a positive ε. By the uniform convergence we can choose an $M>j$ so that $\left|S_{M}\right| \leqslant(1+\varepsilon)\left|S_{\infty}\right|$ on $[0, \rho \mid$ which gives

$$
\begin{equation*}
\left\|S_{M}(\rho x) \leqslant\right\| S_{\infty} \|+\varepsilon . \tag{14}
\end{equation*}
$$

Applying Lemma 3 therefore gives

$$
\begin{equation*}
\left\|S_{j}(\rho x)\right\| \leqslant 2\left\|S_{M}(\rho x)\right\| \leqslant 2\left\|S_{\infty}\right\|+2 \varepsilon, \tag{15}
\end{equation*}
$$

and we may now let $\rho \rightarrow 1$ and then $\varepsilon \rightarrow 0$. (Note that we did not have to assume $\left\|S_{\infty}\right\|<\infty$ since the result is trivial when $\left\|S_{\infty}\right\|=\infty$.)

Having completed these preliminaries it is an easy task to display our example. We simply choose any fast sequence N_{i} and then take $\Lambda=\bigcup_{i=1}^{\infty}\left\{N_{i}, 2 N_{i}, \ldots, i N_{i}\right\}$. To prove that this has the desired property we note that every $f(x) \in S_{A}$ has an Erdös expansion $\sum_{i=0}^{\infty} P_{i}\left(x^{N_{i}}\right)$ satisfying the hypotheses of Lemma 4. Therefore, by that lemma, and in the language of that lemma, we have $\left\|S_{j}\right\| \leqslant 2\|f\|,\left\|S_{j-1}\right\| \leqslant 2\|f\|,\left\|S_{0}\right\| \leqslant 2\|f\|$. This means that the map, T_{j}, taking each $f \in S_{A}$ into its $S_{j}-S_{j-1}+S_{0}$ has norm bounded by 6. The map T_{j}, however, is a projection from S_{A} onto $\operatorname{span}\left\{1, x^{N_{j}}, x^{2 N_{j}}, \ldots, x^{j N_{j}}\right\}$.

Thus if there were a bounded projection P of $C[0,1]$ onto S_{A} then $T_{j} P$ would be a projection of $C[0,1]$ onto $\operatorname{span}\left\{1, x^{N_{j}}, \ldots, x^{j N_{j}}\right\}$. The bound $\left\|T_{j} P\right\| \leqslant 6\|P\|$ would, therefore, give a contradiction to Lemma 1! Q.E.D.

